Engineered immune cells deliver anticancer signal, prevent cancer from spreading

Thursday, March 25, 2021

Engineered immune cells deliver anticancer signal, prevent cancer from spreading

Image
Natural Killer Cell (NK Cell) destroying a cancer cell - stock photo

Scientists have genetically engineered immune cells, called myeloid cells, to precisely deliver an anticancer signal to organs where cancer may spread. In a study of mice, treatment with the engineered cells shrank tumors and prevented the cancer from spreading to other parts of the body. The study, led by scientists at the National Cancer Institute鈥檚 (NCI) Center for Cancer Research, part of the 2023 蜜芽传媒, was published March 24, 2021, in Cell.

鈥淭his is a novel approach to immunotherapy that appears to have promise as a potential treatment for metastatic cancer,鈥 said the study鈥檚 leader, Rosandra Kaplan, M.D., of NCI鈥檚 Center for Cancer Research.

Metastatic cancer 鈥 cancer that has spread from its original location to other parts of the body 鈥 is notoriously difficult to treat. Dr. Kaplan鈥檚 team has been exploring another approach: Preventing cancer from spreading in the first place.

Before cancer spreads, it sends out signals that get distant sites ready for the cancer鈥檚 arrival 鈥 like calling ahead to have the pillows fluffed in your hotel room prior to arrival. These 鈥減rimed and ready鈥 sites, discovered by Dr. Kaplan in 2005, are called premetastatic niches.

In the new study, the NCI team explored the behavior of immune cells in the premetastatic niche. Because Dr. Kaplan is a pediatric oncologist, the team mainly studied mice implanted with , a type of cancer that develops in the muscles of children and often spreads to their lungs.

To study the premetastatic niche, the researchers looked at the lungs of the mice after tumors formed in the leg muscle but before the cancer was found in the lungs. The immune system鈥檚 natural ability to attack cancer was present but actively stifled in the lungs, the NCI scientists discovered. There were few cancer-killing immune cells, but many cells that suppress the immune system.

Myeloid cells, in particular, were abundant in the premetastatic niche and continued to gather there as the cancer progressed. Myeloid cells are part of the body鈥檚 first response to infection, injury, and cancer. When they detect a threat, they normally make interleukin 12 (IL-12), a signal that alerts and activates other immune cells. But myeloid cells in the lung premetastatic niche instead sent out signals that told cancer-fighting immune cells to stand down, the researchers found.

Together, these features of the lung premetastatic niche allow cancer cells to thrive when they spread there, Dr. Kaplan explained.

The NCI team wondered if they could take advantage of myeloid cells to spur the immune system into action in the premetastatic niche by changing the message they deliver. So, they used genetic engineering to add an extra gene for IL-12 to myeloid cells from lab mice.

鈥淲e chose myeloid cells to deliver IL-12 based on their unique ability to home to tumors and metastatic sites,鈥 Dr. Kaplan said. 鈥淲ith IL-12, we鈥檙e turning the volume up on a message that鈥檚 been quieted.鈥

In mice with rhabdomyosarcoma, these genetically engineered myeloid cells, nicknamed GEMys, produced IL-12 in the primary tumor and in metastatic sites. As hoped, the GEMys recruited and activated cancer-killing immune cells in the premetastatic niche and lowered the signals that suppress the immune system, the researchers found.

鈥淲e were excited to see that the GEMys 鈥榗hanged the conversation鈥 in the premetastatic niche. They were now telling other immune cells to get ready to fight the cancer,鈥 Dr. Kaplan said.

As a result, mice treated with GEMys had less metastatic cancer in the lungs, smaller tumors in the muscle, and they lived substantially longer than mice treated with nonengineered myeloid cells. The researchers found similar results when they studied mice with pancreatic tumors that spread to the liver.

The NCI team also found that, in combination with chemotherapy, surgery, or T-cell transfer therapy, the effects of the GEMy treatment improved. For example, giving mice a single dose of chemotherapy two days before the GEMy infusion cured mice with rhabdomyosarcoma, meaning the treatment completely eliminated all traces of cancer for more than 100 days.

鈥淚 have never seen that kind of durable cure in my research before. Typically, cancer growth will slow down after treatment, but then it will come back with a vengeance,鈥 Dr. Kaplan said.

The team also found evidence that the chemotherapy and GEMys combination might prevent cancer from coming back. When the researchers reintroduced cancer cells into mice that had been cured by the combination treatment, tumors didn鈥檛 form. This suggests that the combination treatment leaves a long-lasting 鈥渋mmune memory鈥 of the cancer, the researchers explained.

As a final step in their study, the researchers created GEMys from human cells grown in the lab. In lab dishes, the genetically engineered human cells produced IL-12 and activated cancer-killing immune cells.

The team plans to test the safety of human GEMys in a clinical trial of adults with cancer and, if it proves to be safe, in children and adolescents with cancer. There are many unanswered questions they hope to explore, including whether the homing pattern of GEMys is similar in humans and mice, and whether IL-12 from the GEMys will cause side effects in patients.

But the researchers are reassured by several factors. 鈥淲e are delivering a small amount of IL-12 that鈥檚 similar to the body鈥檚 natural response to an infection, creating a ripple effect of immune activation against the cancer. In addition, GEMys don鈥檛 multiply rapidly inside the body, so they鈥檙e not flooding the system with IL-12,鈥 explained Sabina Kaczanowska, Ph.D., first author of the study. These are important considerations because high levels of IL-12 throughout the body can be toxic.

鈥淎lthough there are challenges of planning a first-in-human trial of a cell therapy, I鈥檓 grateful to have access to the resources of the NIH Clinical Center and to be able to lean on the experience of my NCI colleagues who have had decades of experience developing cell therapies for cancer,鈥 Dr. Kaplan added.

About the Center for Cancer Research (CCR): CCR comprises nearly 250 teams conducting basic, translational, and clinical research in the NCI intramural program鈥攁n environment supporting innovative science aimed at improving human health. CCR鈥檚 clinical program is housed at the NIH Clinical Center 鈥 the world鈥檚 largest hospital dedicated to clinical research. For more information about CCR and its programs, visit .

About the National Cancer Institute (NCI): NCI leads the National Cancer Program and NIH鈥檚 efforts to dramatically reduce the prevalence of cancer and improve the lives of cancer patients and their families, through research into prevention and cancer biology, the development of new interventions, and the training and mentoring of new researchers. For more information about cancer, please visit the NCI website at  or call NCI鈥檚 contact center, the Cancer Information Service, at 1-800-4-CANCER (1-800-422-6237).

About the 2023 蜜芽传媒 (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

NIH鈥urning Discovery Into Health

Institute/Center

Contact

NCI Press Office

240-760-6600

Connect with Us